

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:

Program operator:

The Norwegian EPD Foundation

The Norwegian EPD Foundation

The Norwegian EPD Foundation

Declaration number:

Registration number:

ECO Platform reference number:

Issue date:

| Saint-Gobain Byggevarer as

| The Norwegian EPD Foundation
| The Norwegian EPD Foundation
| Declaration number: | EPD Foundation | EPD Foundation
| Declaration number: | EPD Foundation | EPD Foundat

weber Sprøytebetong V, dry sprayable mortar

Saint-Gobain Byggevarer as

www.epd-norge.no

General information Product: Owner of the declaration: weber Sprøytebetong V, dry sprayable mortar Saint-Gobain Byggevarer as Contact person: Line Holaker Phone: +47 41 63 50 46 e-mail: info(at)weber-norge.no Program operator: Manufacturer: The Norwegian EPD Foundation Saint-Gobain Byggevarer as Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no Declaration number: ÞÒÚÖËFÍ €JÉ FŒÖÞ Place of production: Saint-Gobain Weber Trondheim, Norway ECO Platform reference number: Management system: ISO 9001, ISO 14001 This declaration is based on Product Category Rules: Organisation no: 940 198 178 CEN Standard EN 15804:2012+A1:2013 serves as core PCR Requirements on the EPD for Mineral factory-made mortar. Statement of liability: Issue date: GFÈEGÈGEFÌ The owner of the declaration shall be liable for the underlying Valid to: GFÈEGÈGEGH information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and Declared unit: Year of study: 2018 1 kg weber Sprøytebetong V, dry sprayable mortar Declared unit with option: Comparability: EPD of construction products may not be comparable if they not A1,A2,A3,A4 comply with EN 15804 and seen in a building context. **Functional unit:** Author of the Life Cycle Assessment: The declaration is developed using EPDGen-Version 1.1 Approval: Company specific data are: Collected/registered by: Line Holaker Internal verification by: Cecilie Evju Verification: Approved: Independent verification of data, other environmental information and the declaration according to ISO14025:2010, § 8.1.3 and § 8.1.4

External

Third party verifier:

Sign

and Ronnig

Senior Research Scientist, Anne Rønning

(Independent verifier approved by EPD Norway)

Sign

Håkon Hauan Managing Director of EPD-Norway

Product

Product description:

weber Sprøytebetong V is a sprayable dry premix mortar based on cement, sand and additives. When mixed with water in a normal concrete/mortar mixer, weber Sprøytebetong V is a ready-to-use mortar for all types of spray works. The mortar can be used both indoors and outdoors. Normal thickness is approximately 20-100 mm.

Product specification

The composition of the product is described in the following table:

Materials	
Binder	10-30%
Aggregate	60-90%
Filler	1-5%
Additives	<0,5%
Packaging	0,2%

Technical data:

weber Sprøytebetong V is tested according to EN 206. Compressive strength, 28 days 20°C: >45 MPa. Reaction to fire: Euroclass A1.

The production of weber Sprøytebetong V is certified according to EN 206.

For further information, see www.weber-norge.no

Market:

Norway

Reference service life, product

Reference service life, building

LCA: Calculation rules

Declared unit:

1 kg weber Sprøytebetong V, dry sprayable mortar

Cut-off criteria:

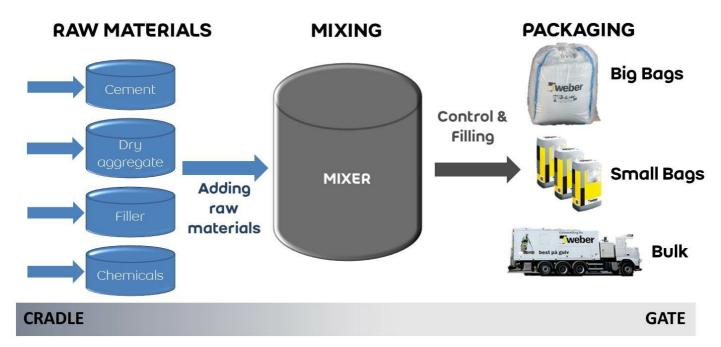
All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. This cut-off rule does not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.


Materials	Source	Data quality	Year
Chemicals	Chemicals below cut-off	No data	0
SCM	0	Waste	0
Aggregate	Østfoldforskning	Database	2012
Cement	NEPD 210, 13	EPD	2012
Filler	Østfoldforskning	Database	2013
Packaging	Østfoldforskning	Database	2013

System boundary:

All processes from raw material extraction to product from the factory gate are included in the analysis (A1-A3). In addition, transportation to a central warehouse placed in accordance with guidelines issued by the EPD Norway (A4) is included.

The flow chart below illustrates the system boundaries for the A1 to A3 part of the analysis.

Additional technical information:

2 kg dry mortar gives approximately 1 liter of final product ex. loss during spraying. The remaining powder is classified as hazardous waste. Cured material is inactive and not classified as hazardous waste and may be disposed as construction waste to disposal or recycling. The packaging properly emptied is not classified as hazardous waste.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck	53,0 %	Truck, EURO 5	50	0,020216	l/tkm	1,01
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

Assembly (A5)

	Unit	Value
Auxiliary	kg	
Water consumption	m ³	
Electricity consumption	kWh	
Other energy carriers	MJ	
Material loss	kg	
Output materials from waste treatment	kg	
Dust in the air	kg	
VOC emissions	kg	

Use (B1)

•	Unit	Value

Maintenance (B2)/Repair (B3)

	Unit	Value						
Maintenance cycle*								
Auxiliary	kg							
Other resources	kg							
Water consumption	m ³							
Electricity consumption	kWh							
Other energy carriers	MJ							
Material loss	kg							
VOC emissions	kg							

Replacement (B4)/Refurbishment (B5)

	Unit	Value
Replacement cycle*		
Electricity consumption	kWh	
Replacement of worn parts		

^{*} Described above if relevant

Operational energy (B6) and water consumption (B7)

	Unit	Value
Water consumption	m ³	
Electricity consumption	kWh	
Other energy carriers	MJ	
Power output of equipment	kW	

End of Life (C1, C3, C4)

	Lind of Line (o1, o3, o4)		
		Unit	Value
	Hazardous waste disposed	kg	
٦	Collected as mixed construction waste	kg	
٦	Reuse	kg	
٦	Recycling	kg	
_	Energy recovery	kg	
	To landfill	kg	

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck					l/tkm	
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

Benefits and loads beyond the system boundaries (D)

LCA: Results

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Product stage				ruction lation ige	User stage					End of life stage			•		Beyond the system bondaries		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal		Reuse-Recovery- Recycling- potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4		D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	Ι. Ι	MND

Environmental impact

Parameter	Unit	A1	A2	А3	A4
GWP	kg CO ₂ -eq	2,10E-01	7,30E-03	3,09E-02	4,23E-03
ODP	kg CFC11 -eq	4,61E-09	1,37E-09	7,23E-09	8,00E-10
POCP	kg C ₂ H ₄ -eq	2,62E-05	1,41E-06	9,59E-06	7,50E-07
AP	kg SO ₂ -eq	1,84E-04	4,03E-05	1,03E-04	1,49E-05
EP	kg PO ₄ ³⁻ -eq	3,12E-04	8,30E-06	1,62E-05	3,10E-06
ADPM	kg Sb -eq	8,84E-08	1,03E-08	1,79E-08	9,35E-09
ADPE	MJ	1,23E+00	1,08E-01	5,72E-01	6,46E-02

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

Resource use

Parameter	Unit	A1	A2	A3	A4
RPEE	MJ	1,75E-01	1,28E-03	8,65E-02	9,93E-04
RPEM	MJ	8,64E-04	3,50E-04	1,31E-03	3,04E-04
TPE	MJ	1,76E-01	1,63E-03	8,78E-02	1,30E-03
NRPE	MJ	1,21E+00	1,10E-01	5,78E-01	6,59E-02
NRPM	MJ	5,81E-02	0,00E+00	0,00E+00	0,00E+00
TRPE	MJ	1,27E+00	1,10E-01	5,78E-01	6,59E-02
SM	MJ	3,38E-03	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	1,42E-01	0,00E+00	0,00E+00	0,00E+00
W	m^3	2,67E-01	6,67E-05	7,10E-04	5,88E-05

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

Reading example: 9.0 E-03 = 9.0*10-3 = 0.009

End of life - Waste

Parameter	Unit	A1	A2	А3	A4
HW	kg	6,67E-07	5,03E-08	2,79E-05	5,00E-08
NHW	kg	3,16E-02	6,80E-03	3,48E-03	6,53E-03
RW	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

End of life - Output flow

Parameter	Unit	A1	A2	A3	A4
CR	kg	0,00E+00	0,00E+00	1,54E-02	0,00E+00
MR	kg	1,20E-04	0,00E+00	5,37E-04	0,00E+00
MER	kg	2,97E-05	0,00E+00	2,13E-06	0,00E+00
EEE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
ETE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
El-mix, Norway (kWh)	Ecoinvent 3	25,30	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list. The product is classified as hazardous waste, see table.

Name	CASNo	Amount	
Portland Cement	65997-15-1	10-30%	

Indoor environment

The product has no impact on the indoor environment.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines

EN 15804:2012+A1:2013 Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products

ISO 21930:2007 Sustainability in building construction - Environmental declaration of building products.

ecoinvent v3, Alloc Rec, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2017) EPD generator v2.0 - Background information for system verification, OR 10.17, Østfoldforskning, Fredrikstad.

Product Category Rules for Environmental Product Declarations: Institut Bauen und Umwelt e.V. (IBU): Requirements on the EPD for Mineral factory-made mortar.

epd-norge.no The Norwegian EPD Foundation	Program operator and publisher The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo 0303 Oslo Norway	Phone: e-mail: web:	+47 23 08 82 92 post@epd-norge.no www.epd-norge.no
Sweber SAINT-GOBAIN	Owner of the declaration Saint-Gobain Byggevarer as P.O. Box 216 Alnabru 0614 Oslo, Norway	Phone: Fax: e-mail: web:	+47 41 63 50 46 +47 22 64 54 54 info(at)weber-norge.no www.weber-norge.no
Ostfoldforskning	Author of the Life Cycle Assessment Ostfold Research Stadion 4 1671 Kråkerøy	Phone: Fax: e-mail: web:	+47 69 35 11 00 +47 69 34 24 94 post@ostfoldforskning.no www.ostfoldforskning.no