YTELSESERKLÆRING Nr: 18-HY [NO]

Varetypens unike identifikasjonskode: Ankermasse ESSVE HY (Chemical anchor ESSVE HY)

Produsent:

ESSVE Produkter AB BOX 7091 164 07 Kista Sweden

info@essve.se

Europeisk teknisk bedømmelse (ETA)	Tilsiktet bruksområde	Artikkelnummer
ETA-18/0614 (2018-07-12)	Bonded anchor consisting of a cartridge with injection mortar ESSVE HY for use in post-installed rebar connections: • concrete strength classes C12/15 to C50/60.	Alle artikkelnummer i produktgruppen er dekket av ETA.
ETA-18/0615 (2019-02-14)	 Bonded anchor consisting of a cartridge with injection mortar ESSVE HY and a steel element for use in: cracked concrete strength classes C20/25 to C50/60. uncracked concrete strength classes C20/25 to C50/60. 	Alle artikkelnummer i produktgruppen er dekket av ETA.

Europeisk teknisk bedømmelse (ETA)	System for vurdering og verifikasjon av byggevarers ytelser (AVCP)	Europeisk bedømmelsesdokument	Teknisk bedømmelsesorgan (TAB)	Teknisk(e) kontrollorgan (NB)
ETA-18/0614 (2018-07-12)	1	EAD 330087-00-0601, (2018-04)	DEUTSCHES INSTITUT FÜR BAUTECHNIK (DiBt)	1343 (FPC)
ETA-18/0615 (2019-02-14)	1	EAD 330499-00-0601, (2014-07)	DEUTSCHES INSTITUT FÜR BAUTECHNIK (DiBt)	1343 (FPC)

YTELSESERKLÆRING Nr: 18-HY [NO]

Europeisk teknisk bedømmelse (ETA)	Dimensjon & Materiale	Egenskap	Ytelse	
		Characteristic resistance under static and quasi-static loading	Annex C1	
ETA-18/0614 (2018-07-12)	Rebar Ø8 to Ø32 Tension Anchor ZA M12-M24	Reaction to fire	Class A1	
		Resistance to fire	Annex C2, C3	
	Threaded rod M8 to M30 Rebar Ø8 to Ø32 Internal threaded rod IG-M6 to IG-M20	Characteristic resistance to tension load (static and quasi-static loading)	Annex C1, C2, C4, C5	
		Characteristic resistance to shear load (static and quasi-static loading)	Annex C1, C3, C5, C7	
		Displacements under short term and long- term loading	Annex C8 – C10	
ETA-18/0615 (2019-02-14)		Durability	Annex B1	
	Threaded rod M8 to M30 (except hot-dipped) Rebar Ø8 to Ø32	Characteristic resistance and displacements for seismic performance category C1	Annex C2, C3, C6, C7	
	Threaded rod M8 to M24 (except hot-dipped)	Characteristic resistance and displacements for seismic performance category C2	NPD	
	-	Content, emission and/or release of dangerous substances	NPD	

Ytelser for denne byggevaren som er anført ovenfor, er i overensstemmelse med de angitte ytelsene. Denne ytelseserklæringen er utarbeidet i overensstemmelse med forordning (EU) nr. 305/2011 under produsentens eneansvar, som anført ovenfor.

Underskrevet for produsenten og på dennes vegne:

Viktor Bukowski Product Developer/Technical expert – Fasteners

Kista 2019-03-25

[ETA's attached as appendixes]

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0614 of 12 July 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

ESSVE injection system HY for rebar connection

Systems for post-installed rebar connections with mortar

ESSVE Produkter AB Esbogatan 14 164 74 KISTA SCHWEDEN

ESSVE Plant No. 671

21 pages including 3 annexes which form an integral part of this assessment

EAD 330087-00-0601

European Technical Assessment ETA-18/0614 English translation prepared by DIBt

Page 2 of 21 | 12 July 2018

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 21 | 12 July 2018

European Technical Assessment ETA-18/0614 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "ESSVE Injection system HY for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 32 mm or the tension anchor ZA from sizes M12 to M24 according to Annex A and injection mortar ESSVE HY are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance	
Reaction to fire	Class A1	
Resistance to fire	See Annex C 2 and C 3	

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-00-0601, the applicable European legal act is: [96/582/EC].

The system(s) to be applied is (are): 1

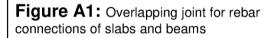
European Technical Assessment ETA-18/0614 English translation prepared by DIBt

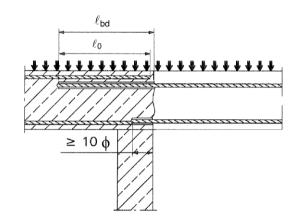
Page 4 of 21 | 12 July 2018

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

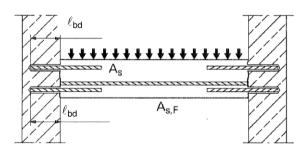
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 12 July 2018 by Deutsches Institut für Bautechnik

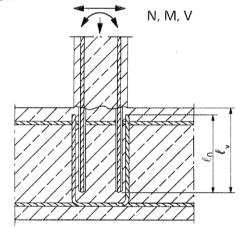

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

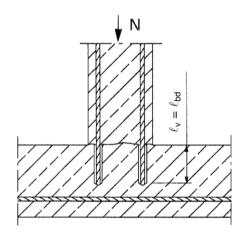

Page 5 of European Technical Assessment ETA-18/0614 of 12 July 2018

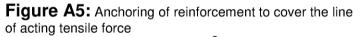
English translation prepared by DIBt



Installation post installed rebar




Figure A3: End anchoring of slabs or beams (e.g. designed as simply supported)



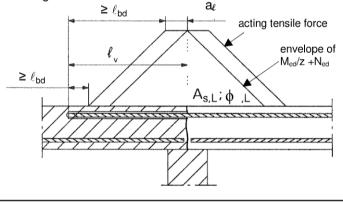

Figure A2: Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

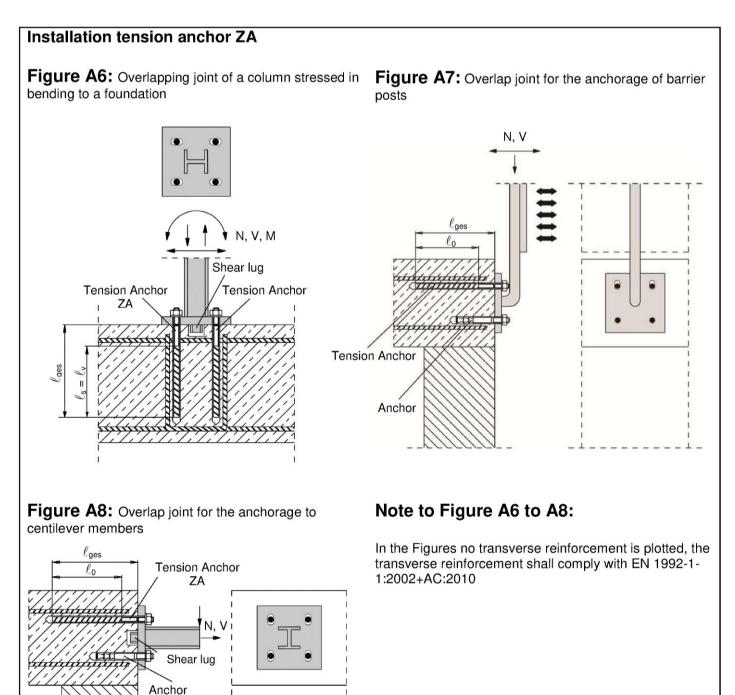
Figure A4: Rebar connection for components stressed primarily in compression. The rebars sre stressed in compression

Note to Figure A1 to A5:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.

Preparing of joints according to Annex B 2

 ESSVE Injection System HY for rebar connection
 Annex A 1


 Product description
 Annex A 1

 Installed condition and examples of use for rebars
 Annex A 1

Page 6 of European Technical Assessment ETA-18/0614 of 12 July 2018

English translation prepared by DIBt

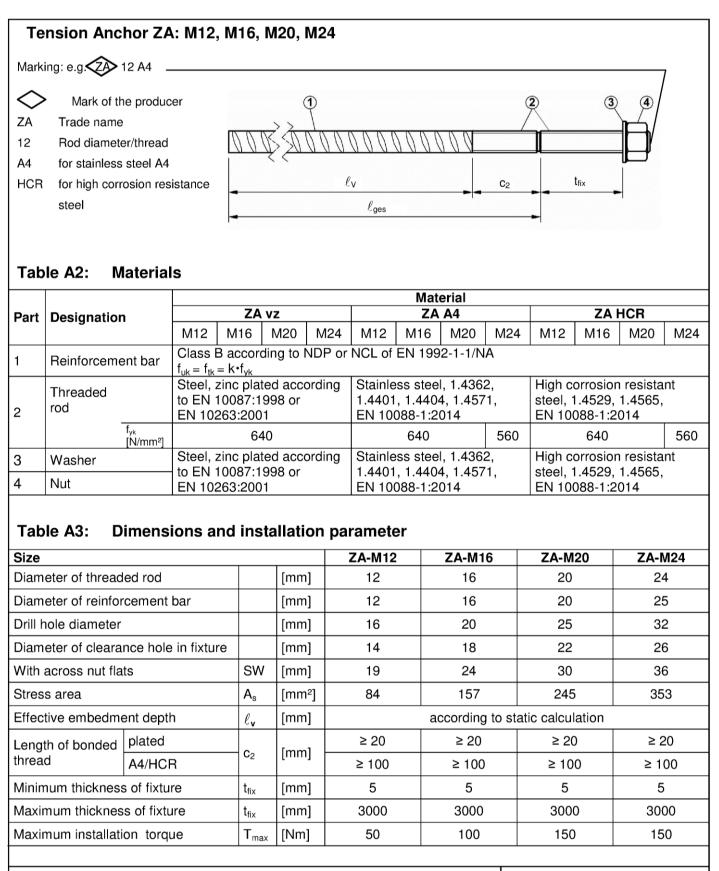
ESSVE Injection System HY for rebar connection

Product description

Installed condition and examples of use for tension anchors ZA

Annex A 2

Page 7 of European Technical Assessment ETA-18/0614 of 12 July 2018



ESSVE Injection System HY:						
Injection mortar: ESSVE HY Typ "coaxial": 150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge	code, shel	SSVE HY, processing notes, charge- f life, hazard-code, curing- and g time (depending on the re), optional with travel scale				
Type "side-by-side": 235 ml, 345 ml and 825 ml cartridge	code, she	SSVE HY, processing notes, charge- f life, hazard-code, curing- and g time (depending on the re), optional with travel scale				
Static Mixer						
\Diamond	Jx))					
Piston plug and mixer extension						
Reinforcing bar (rebar): ø8 to ø32						
Tension Anchor ZA: M12 to M24	4					
000 \$ \$ 00000	00000					
ESSVE Injection System HY for rebar c	onnection					
Product description Injection mortar / Static mixer / Rebar / Te	nsion Anchor ZA	Annex A 3				

Reinforcing bar (rebar): ø8, ø10, ø12, ø14, ø16, ø20, ø22, ø24, ø25, ø28, ø32					
 Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010 Rib height of the bar shall be in the range 0,05¢ ≤ h ≤ 0,07¢ (¢: Nominal diameter of the bar; h: Rip height of the bar) 					
Table A1: Materials					
Designation	Material				
Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$				
ESSVE Injection System HY for rebar connection	1				

ESSVE Injection System HY for rebar connection

Product description

Specifications Tension Anchor ZA

Annex A 5

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads.
- Fire exposure

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C50/60 according to EN 206-1:2000.
- Maximum chloride concrete of 0,40% (CL 0.40) related to the cement content according to EN 206-1:2000.
- Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010.

The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature Range:

• - 40°C to +80°C (max. short term temperature +80°C and max long term temperature +50°C).

Use conditions (Environmental conditions):

• Structures subject to dry internal conditions or subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist

(stainless steel or high corrosion resistant steel).

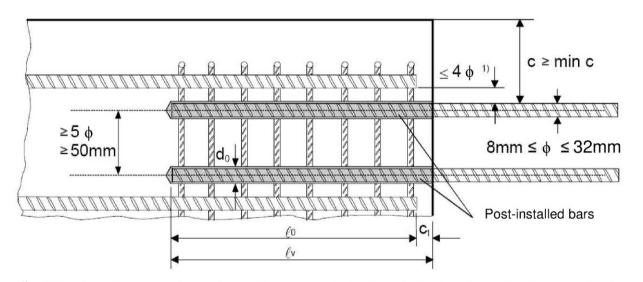
• Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 and Annex B 2 and B 3.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:


- · Dry or wet concrete.
- · It must not be installed in flooded holes.
- Hole drilling by hammer drill (HD) or compressed air drill mode (CD).
- The installation of post-installed rebar resp. tension anchors shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

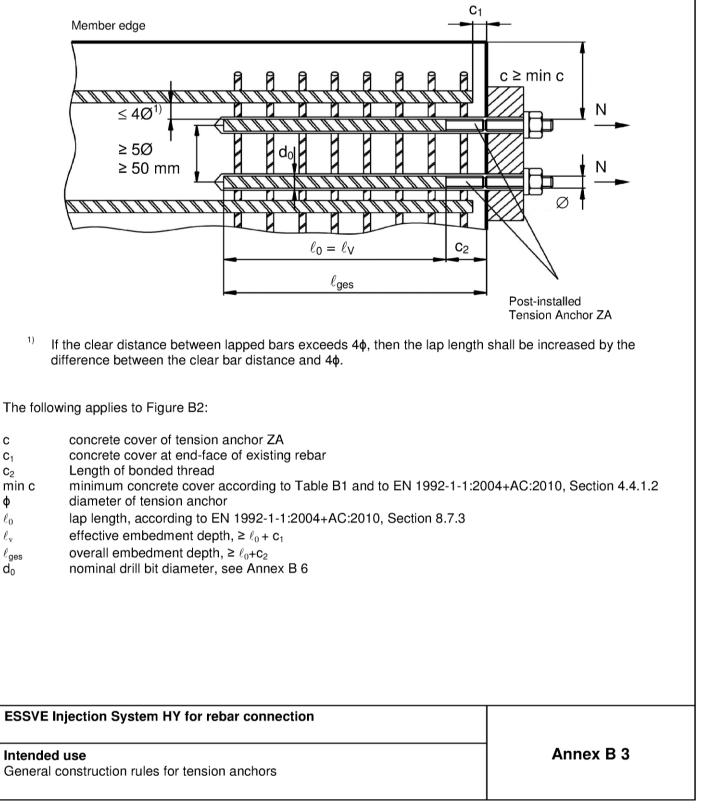
ESSVE Injection System HY for rebar connection	
Intended use Specifications	Annex B 1

Figure B1: General construction rules for post-installed rebars

- · Only tension forces in the axis of the rebar may be transmitted
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

¹⁾ If the clear distance between lapped bars exceeds 4¢, then the lap length shall be increased by the difference between the clear bar distance and 4¢.

The following applies to Figure B1:


- c concrete cover of post-installed rebar
- c1 concrete cover at end-face of existing rebar
- min c minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
 φ diameter of post-installed rebar
- ℓ_0 lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- ℓ_v effective embedment depth, $\geq \ell_0 + c_1$
- d₀ nominal drill bit diameter, see Annex B 6

ESSVE Injection System HY for rebar connection	
Intended use General construction rules for post-installed rebars	Annex B 2

Figure B2: General construction rules for tension anchors ZA

- The length of the bonded-in thread may be not be accounted as anchorage
- Only tension forces in the direction of the bar axis may be transmitted by the tension anchor ZA
- · The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transfer of shear forces shall be ensured by appropriate additional measures, e.g shear lugs or by anchors with an European technical assessment.
- In the anchor plate, the holes for the tension anchors shall be executed as elongated holes with axis in the direction of the shear force.

1)

Table B1: Minimum concre post-installed re drilling method	Drilling aid		
Drilling method	Rebar diameter	Without drilling aid	With drilling aid
Hommor drilling (HD)	< 25 mm	30 mm + 0,06 · ℓ _v ≥ 2 φ	$30 \text{ mm} + 0,02 \cdot \ell_{v} \geq 2 \phi$
Hammer drilling (HD)	≥ 25 mm	40 mm + 0,06 · ℓ _v ≥ 2 φ	$40 \text{ mm} + 0.02 \cdot \ell_{v} \geq 2 \phi$
Compressed air drilling (CD)	< 25 mm	50 mm + 0,08 · ℓ _v	50 mm + 0,02 · ℓ_v
	≥ 25 mm	60 mm + 0,08 · ℓ _v	60 mm + 0,02 · ℓ _v

see Annex B2, Figures B1 and Annex B3, Figure B2

Comments: The minimum concrete cover acc. EN 1992-1-1:2004+AC:2010 must be observed

Table B2: maximum embedment depth $\ell_{v,max}$

Rebar	Tension anchor	
φ	φ	$\ell_{v,max}$ [mm]
8 mm		1000
10 mm		1000
12 mm	M12	1200
14 mm		1400
16 mm	M16	1600
20 mm	M20	2000
22 mm		2000
24 mm		2000
25 mm	M24	2000
28 mm		2000
32 mm		2000

Table B3: Base material temperature, gelling time and curing time

Concrete temperature		perature	Gelling working time ¹⁾	Minimum curing time in dry concrete	Minimum curing time in wet concrete
- 5 °C	to	- 1 °C	50 min	5 h	10 h
0 °C	to	+ 4 °C	25 min	3,5 h	7 h
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h
+ 15 °C	to	+ 19 °C	6 min	40 min	60 min
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min
Cartridge	e temp	oerature		+5°C to +40°C	
¹⁾ t max	vimum	time from st	arting of mortar injection to (completing of rebar setting	

"t_{gel}: maximum time from starting of mortar injection to completing of rebar setting.

ESSVE Injection System	HY for rebar connection
------------------------	-------------------------

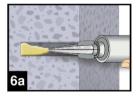
l	Intended use
l	Minimum concrete cover
	Maximum embedment depth / working time and curing times

Annex B 4

Table B4: Dispensing tools Cartridge Hand tool Pneumatic tool type/size Coaxial cartridges 150, 280, 300 up to 333 ml e.g. Type H 297 or H244C e.g. Type TS 492 X Coaxial cartridges 380 up to 420 ml e.g. Type CCM 380/10 e.g. Type H 285 or H244C e.g. Type TS 485 LX Side-by-side cartridges 235, 345 ml e.g. Type CBM 330A e.g. Type H 260 e.g. Type TS 477 LX Side-by-side cartridge 825 ml e.g. Type TS 498X

All cartridges could also be extruded by a battery tool.

ESSVE Injection System HY for rebar connection	
Intended Use	Annex B 5
Dispensing tools	


A) Bore hole	drilling						
	 Drill a hole into the base material to the selected reinforcing bar with carbide h (CD). In case of aborted drill hole: the 	nammer drill (HD) or a compre	essed air drill			
		Rebar - φ	ZΑ- Φ	Drill - Ø [mm]			
1		8 mm		12			
		10 mm		14			
AND DESCRIPTION OF		12 mm	M12	16			
		14 mm		18			
		16 mm	M16				
				20			
		20 mm	M20	25			
		22 mm		28			
		24 mm		32			
Hammer drill	(HD) Compressed air drill (CD)	25 mm	M24	32			
		28 mm		35			
		32 mm		40			
B) Bore hole	cleaning						
MAC: Cleaning for	bore hole diameter $d_0 \leq 20$ mm and bore hole	e depth h₀ ≤ 10d	e				
	2a. Starting from the bottom or back of the bo		•	- Is a set of the second			
 (Annex B 7) a minimum of four times. (Annex B 7) a minimum of four times. Check brush diameter (Table B5). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B5) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension shall be used. Finally blow the hole clean again with a hand pump (Annex B 7) a minimum of four times. 							
CAC: Cleaning for	all bore hole diameter and bore hole depth						
2a 2x	2a. Starting from the bottom or back of the b compressed air (min. 6 bar) (Annex B 7) stream is free of noticeable dust. If the b extension shall be used.	a minimum of tw	vo times until	return air			
 2b. Check brush diameter (Table B5). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B5) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B5). 							
2c 2x	2c. Finally blow the hole clean again with cominimum of two times until return air streaground is not reached an extension shall	eam is free of not					
ESSVE Injection S	stem HY for rebar connection						
Intended Use Installation instruction: Bore hole cleaning		Anı	nex B 6				

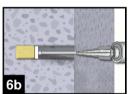


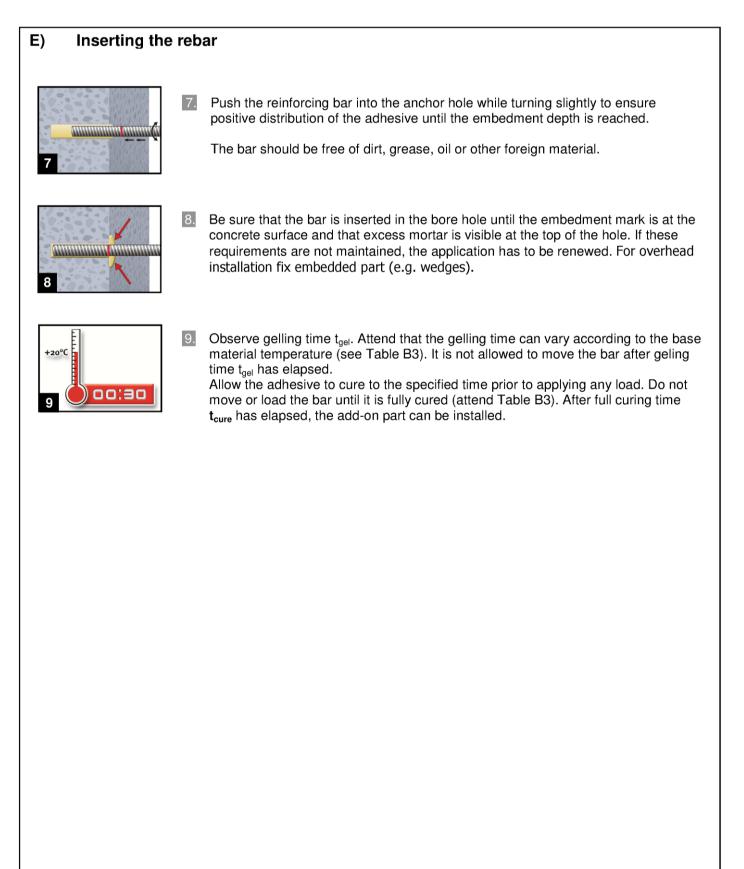
Table B5 Brush RE	i: Cleanin 3:	g tools L				SDS Plus Ac	lapter:			
Bruch	extension:	******	a a a a a a a a a a a a a a a a a a a	*****	₩ <u> </u>					
Brushe	extension:									
φ Rebar	φ Tension anchor	d₀ Drill bit - Ø		l _b sh - Ø	d _{b,min} min. Brush - Ø		CELLULATION OF			
(mm)	(mm)	(mm)		(mm)						
8		12	RB12	13,5	12,5	Hand	pump (volume 750 ml)			
10 12	M12	14 16	RB14 RB16	15,5 17,5	14,5 16,5					
12	10112	18	RB18	20,0	18,5					
16	M16	20	RB20	22,0	20,5		• •			
20	M20	25	RB25	27,0	25,5	~~~~~~				
22		28	RB28	30,0	28,5					
24		32	RB32	34,0	32,5					
25	M24	32	RB32	34,0	32,5					
28		35	RB35	37,0	35,5		ompressed air tool			
32		40	RB40	43,5	40,5	hand s	slide valve (min 6 bar)			
3 M 3a	3a. In case of using the mixer extension VL16/1,8, the tip of the mixer nozzle has to be cut off at position "X".									
 embedment depth shall be marked (e.g. with tape) on the reinforcing bar and insert bar in empty hole to verify hole and depth <i>l</i>_v. The reinforcing bar should be free of dirt, grease, oil or other foreign material. Frior to dispensing into the anchor hole, squeeze out separately the mortar until it shows a consistent grey colour, but a minimum of three full strokes, and discard non-uniformly mixed adhesive components. 										
Intended I	Jse	em HY for rel Cleaning tools cartridge		ection			Annex B 7			

D) Filling the bore hole

6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used.

For overhead and horizontal installation and bore holes deeper than 240 mm a piston plug and the appropriate mixer extension must be used.

Observe the gel-/ working times given in Table B3.


Table B6: Piston plugs, max anchorage depth and mixer extension

	Tension		rill			Cartri All s				ridge: de (825 ml)	
Bar size	anchor	bit	-Ø	Piston plug				atic tool	Pneumatic tool		
φ	ф	HD	CD	plug	I _{v,max}	Mixer I		Mixer extension	I _{v,max}	Mixer extension	
[mm]	[mm]	[m	m]		[cm]		[cm]		[cm]		
8		12	-	-			80		80	VL 10/0,75	
10		14	-	VS14					100	VL 10/0,75	
12	M12	1	6	VS16	70		100		120		
14		1	8	VS18			100		140		
16	M16	2	0	VS20					160		
20	M20	25	26	VS25		VL 10/0,75	70	VL 10/0,75			
22		2	8	VS28			70		200	VL 16/1,8	
24		3	2	VS32	50				200		
25	M24	3	2	VS32	50		50				
28		3	5	VS35			50		200		
32		4	0	VS40					200		
Injection tool must be marked by mortar level mark ℓ_m and anchorage depth ℓ_v resp. $\ell_{e,ges}$ with tape or marker. Quick estimation: $\ell_m = 1/3 \cdot \ell_v$ Continue injection until the mortar level mark ℓ_m becomes visible. Optimum mortar volume: $\ell_m = \ell_v$ resp. $\ell_{e,ges} \cdot \left(1,2 \cdot \frac{\varphi^2}{d_0^2} - 0,2\right)$ [mm]											
Intende	ESSVE Injection System HY for rebar connection Intended Use Installation instruction: Filling the bore hole							_	Annex B	8	

Page 18 of European Technical Assessment ETA-18/0614 of 12 July 2018

English translation prepared by DIBt

ESSVE Injection System HY for rebar connection

Intended Use Installation instruction: Inserting rebar

Annex B 9

Minimum anchorage length and minimum lap length

The minimum anchorage length $\ell_{b,min}$ and the minimum lap length $\ell_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($\ell_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $\ell_{0,min}$ acc. to Eq. 8.11) shall be multiply by the amplification factor α_{lb} according to Table C1.

Table C1: Amplification factor α_{lb} related to concrete class and drilling method

Concrete class	Drilling method	Bar size	Amplification factor α_{lb}
C12/15 to C50/60	Hammer drilling and compressed air drilling	8 mm to 32 mm ZA-M12 to ZA-M24	1,0

Table C2: Reduction factor k_b for all drilling methods

Rebar - Ø		Concrete class							
φ	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 32 mm ZA-M12 to ZA-M24					1,0				

Table C3: Design values of the ultimate bond stress f_{bd,PIR} in N/mm² for all drilling methods and for good conditions

 $f_{bd,PIR} = k_b \cdot f_{bd}$

with

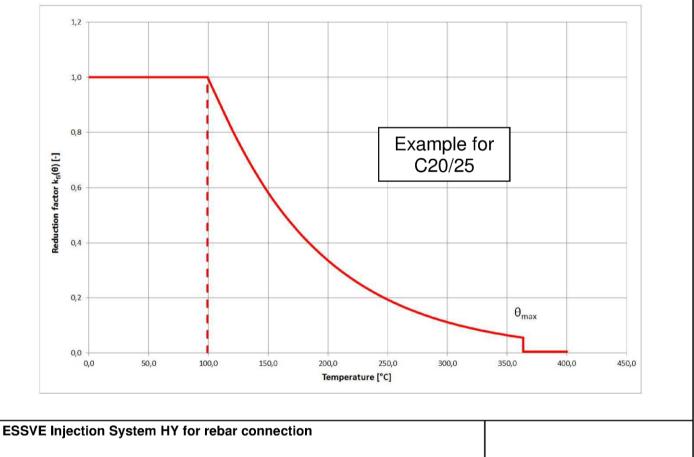
 f_{bd} : Design value of the ultimate bond stress in N/mm² considering the concrete classes and the rebar diameter according to EN 1992-1-1:2004+AC:2010. (for all other bond conditions multiply the values by 0.7) k_b : Reduction factor according to Table C2

Rebar - Ø		Concrete class								
φ	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
8 to 32 mm ZA-M12 to ZA-M24	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3	
ESSVE Injection Sys	tem HY fo	or rebar co	nnection							
Performances							Ar	nex C 1		
Amplification factor $\alpha_{ extsf{lb}}$	Reductior	n factor								
Design values of ultim	ate bond re	esistence f								

Design value of the ultimate bond stress $f_{bd,fi}$ under fire exposure for concrete classes C12/15 to C50/60, (all drilling methods):

The design value of the bond stress $f_{bd,fi}$ under fire exposure has to be calculated by the following equation:

 $\mathbf{f}_{\mathsf{bd},\mathsf{fi}} = \mathbf{k}_{\mathsf{fi}}(\mathbf{\theta}) \cdot \mathbf{f}_{\mathsf{bd},\mathsf{PIR}} \cdot \mathbf{\gamma}_{\mathsf{c}} / \mathbf{\gamma}_{\mathsf{M},\mathsf{fi}}$


 $\begin{array}{ll} \mbox{with:} & \theta \leq 364^{\circ}C \mbox{:} & k_{fi}(\theta) = 30, 34 \cdot e^{(\theta \, \cdot \, \cdot 0, 011)} / \; (f_{bd, PIR} \, \cdot \, 4, 3) \leq 1, 0 \\ & \theta > 364^{\circ}C \mbox{:} & k_{fi}(\theta) = 0 \end{array}$

f_{bd,fi} Design value of the ultimate bond stress in case of fire in N/mm²

- θ Temperature in °C in the mortar layer.
- $k_{fi}(\theta)$ Reduction factor under fire exposure.
- f_{bd,PIR} Design value of the ultimate bond stress in N/mm² in cold condition according to Table C3 considering the concrete classes, the rebar diameter and the bond conditions according to EN 1992-1-1:2004+AC:2010.
- γ_c partially safety factor according to EN 1992-1-1:2004+AC:2010
- $\gamma_{M,fi}$ partially safety factor according to EN 1992-1-2:2004+AC:2008

For evidence under fire exposure the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent ultimate bond stress $f_{bd,fi}$.

Example graph of Reduction factor $k_{fi}(\theta)$ for concrete classes C20/25 for good bond conditions:

Performances

Design value of bond strength $f_{\text{bd},\text{fi}}$ under fire exposure

Annex C 2

	Characteristic tension strength for tension anchor ZA under fire exposure,								
	concrete cl	asses C12/	15 to C50/60), according to T	echnical Report T	R 020			
Tension Ancho	•			M12	M16	M20	M24		
Steel, zinc plate				W112	WIO	W20	WIZ-4		
	R30				20				
Characteristic	R60		n la ci		15	5			
steel strength	R90	σ _{Rk,s,fi}	[N/mm²]		13				
	R120			10					
Stainless Steel (ZA A4 or Z	A HCR)							
	R30		σ _{Rk,s,fi} [N/mm²] –		30				
Characteristic	R60				25				
steel strength	R90	$\mathbf{O}_{Rk,s,fi}$			20				
	R120				16	6			
Design value of the steel strength $\sigma_{Rd,s,fi}$ under fire exposure The design value of the steel strength $\sigma_{Rd,s,fi}$ under fire exposure has to be calculated by the following equation:									
$\sigma_{\mathrm{Rd,s,fi}} =$	$\sigma_{_{Rk,s,fi}}$ / $\gamma_{_{M,}}$	fi							

with:

${f \sigma}_{Rk,s,fi}$	characteristic steel strength according to Table C4
ŶM,fi	partially safety factor according to EN 1992-1-2:2004+AC:2008

ESSVE Injection System HY for rebar connection	
Performances	Annex C 3
Design value of the steel strength $\sigma_{\rm Rd,s,fi}$ for tension anchor ZA under fire exposure	

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0615 of 14 February 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik European Technical Assessment: Trade name of the construction product Essve Injection system HY for concrete Product family Bonded fastener for use in concrete to which the construction product belongs **ESSVE** Produkter AB Manufacturer Esbogatan 14 164 74 KISTA **SCHWEDEN** Manufacturing plant ESSVE Plant No. 671 This European Technical Assessment 25 pages including 3 annexes which form an integral part contains of this assessment EAD 330499-00-0601 This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-18/0615 issued on 4 September 2018

European Technical Assessment ETA-18/0615 English translation prepared by DIBt

Page 2 of 25 | 14 February 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 25 | 14 February 2019

Specific Part

1 Technical description of the product

The "Essve Injection system HY for concrete" is a bonded anchor consisting of a cartridge with injection mortar ESSVE HY and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1, C 2, C 4, C 5
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1, C 3, C 5, C 7
Displacements	See Annex
(static and quasi-static loading)	C 8, C 9, C 10
Characteristic resistance for seismic performance	See Annex
category C1	C 2, C 3, C 5, C 7
Characteristic resistance and displacements for seismic	See Annex
performance category C2	C 2, C 3, C 8

3.2 Hygiene, health and the environment (BWR 3)

	Essential characteristic	Performance
ſ	Content, emission and/or release of dangerous substances	No performance assessed

Page 4 of 25 | 14 February 2019

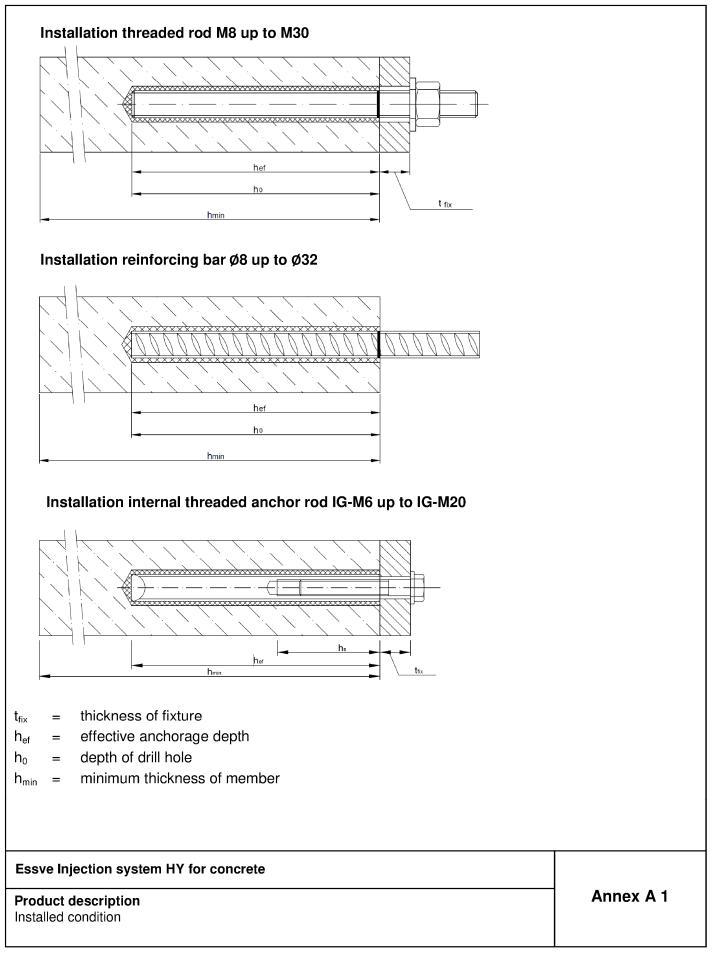
European Technical Assessment ETA-18/0615

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

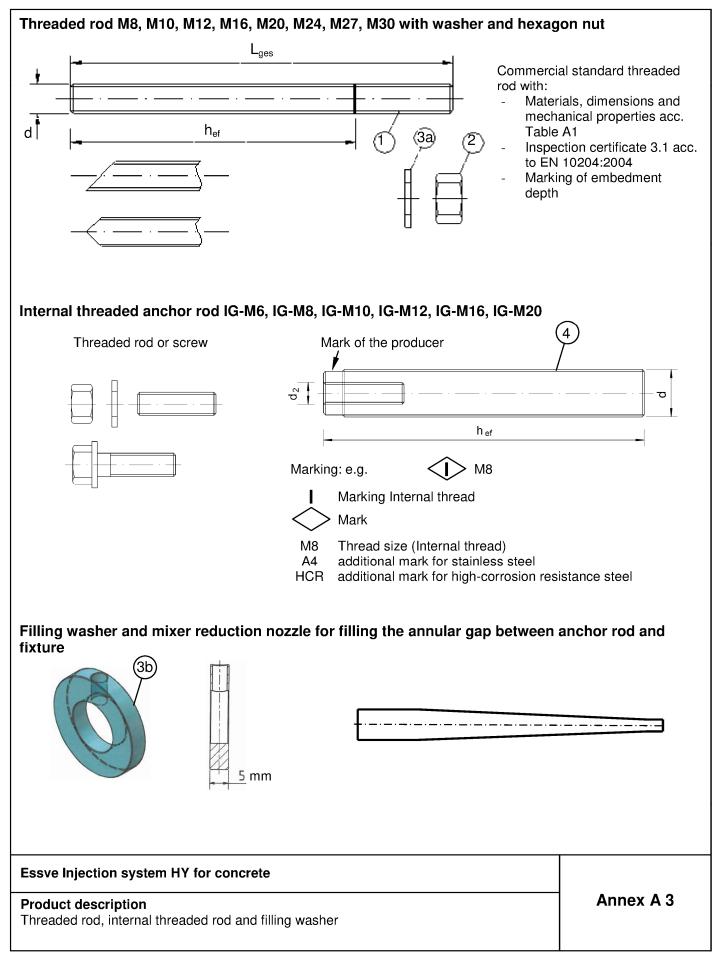
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 14 February 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider



Page 6 of European Technical Assessment ETA-18/0615 of 14 February 2019

Cartridge: ESSVE HY 150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: c	oaxial)
Sealing/Screw cap	and processing
235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")	
Sealing/Screw cap	nd processing
Static Mixer	
Essve Injection system HY for concrete Product description Injection system	Annex A 2

	ble A1: Materials				
<u>.</u>	Designation	Material	0001)		
	I, zinc plated (Steel acc. to EN 100		2001) sed $\ge 40 \ \mu m$ acc. to EN ISO 1461:2009 and		
	SO 10684:2004+AC:2009 or sherarc				
		1200 = 40 μm acc. το Ει	4.6 f_{uk} =400 N/mm ² ; f_{vk} =240 N/mm ² ; $A_5 > 8\%$	6 fracture elongation	
		Dranauticalana	$\begin{array}{c c} \hline & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$	-	
1	Anchor rod	Property class acc. to	$\frac{4.8 \text{ f}_{uk}=300 \text{ N/mm}^2; \text{ f}_{yk}=320 \text{ N/mm}^2; \text{ f}_{yk}=300 \text{ N/mm}^2; \text{ f}_{5}>8\%$	—	
I	Allehol Tod	EN ISO 898-1:2013	$\frac{5.8}{5.8} \int_{\text{fuk}} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000000000000000000000000000000000$		
			$\begin{array}{c c} 3.8 & f_{uk} = 300 \text{ N/mm}^2, f_{yk} = 400 \text{ N/mm}^2, A_5 > 07 \\ \hline 8.8 & f_{uk} = 800 \text{ N/mm}^2; f_{yk} = 640 \text{ N/mm}^2; A_5 > 12 \end{array}$		
		During alarm	4 for anchor rod class 4.6 or 4.8		
2	Hoxagon put	Property class acc. to	5 for anchor rod class 5.6 or 5.8		
2	Hexagon nut	EN ISO 898-2:2012	8 for anchor rod class 8.8		
	Weeher				
3a	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000,				
	EN ISO 7093:2000 oder EN ISO 7094:2000)	Steel, zinc plated, hot-	dip galvanised or sherardized		
3b	Filling washer				
4	Internal threaded anchor rod	Property class acc. to	5.8 f _{uk} =500 N/mm ² ; f _{yk} =400 N/mm ² ; A ₅ >	8% fracture elongation	
т	internal inteaded anchor rod	EN ISO 898-1:2013	8.8 f _{uk} =800 N/mm ² ; f _{yk} =640 N/mm ² ; A ₅ >	8% fracture elongatio	
Stai	nless steel A2 (Material 1.4301 / 1.4		or 1.4541, acc. to EN 10088-1:2014)		
nd	•		, , , , , , , , , , , , , , , , , , ,		
Stai	nless steel A4 (Material 1.4401 / 1.4	1404 / 1.4571 / 1.4362 o	or 1.4578, acc. to EN 10088-1:2014)		
		Property class	_50 f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ; A ₅ > 12	% fracture elongation	
1	Anchor rod ¹⁾⁴⁾	acc. to	70 f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ² ; A ₅ > 12	% fracture elongation	
		EN ISO 3506-1:2009	80 f _{uk} =800 N/mm ² ; f _{yk} =600 N/mm ² ; A ₅ > 12	% fracture elongation	
		Property class	50 for anchor rod class 50		
2	Hexagon nut ¹⁾⁴⁾	acc. to	0 for anchor rod class 70		
		EN ISO 3506-1:2009			
3a	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)		.4303 / 1.4307 / 1.4567 or 1.4541, EN 1008	38-1-2014	
3b	Filling washer ⁵⁾		.4404 / 1.4571 / 1.4362 or 1.4578, EN 1008	38-1:2014	
3b 4		Property class acc. to	50 f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; A_5 >	38-1:2014 8% fracture elongatio	
4	Filling washer ⁵⁾ Internal threaded anchor rod ¹⁾²⁾	Property class acc. to EN ISO 3506-1:2009		38-1:2014 8% fracture elongatio	
4	Filling washer ⁵⁾	Property class acc. to EN ISO 3506-1:2009		38-1:2014 8% fracture elongatio	
4 High	Filling washer ⁵⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mater	Property class acc. to EN ISO 3506-1:2009		38-1:2014 8% fracture elongatio 8% fracture elongatio % fracture elongation	
4 High	Filling washer ⁵⁾ Internal threaded anchor rod ¹⁾²⁾	Property class acc. to EN ISO 3506-1:2009 ial 1.4529 or 1.4565, a Property class acc. to		38-1:2014 8% fracture elongatio 8% fracture elongation 2% fracture elongation 2% fracture elongation	
4 l igh	Filling washer ⁵⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mater	Property class acc. to EN ISO 3506-1:2009 ial 1.4529 or 1.4565, an Property class		38-1:2014 8% fracture elongatio 8% fracture elongation 2% fracture elongation 2% fracture elongation	
4 High	Filling washer ⁵⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mater Anchor rod ¹⁾	Property class acc. to EN ISO 3506-1:2009 ial 1.4529 or 1.4565, au Property class acc. to EN ISO 3506-1:2009		38-1:2014 8% fracture elongation 8% fracture elongation 2% fracture elongation 2% fracture elongation	
4 l igh	Filling washer ⁵⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mater	Property class acc. to EN ISO 3506-1:2009 ial 1.4529 or 1.4565, ac Property class acc. to EN ISO 3506-1:2009 Property class acc. to		38-1:2014 8% fracture elongation 8% fracture elongation 2% fracture elongation 2% fracture elongation	
4 High 1	Filling washer ⁵⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mater Anchor rod ¹⁾	Property class acc. to EN ISO 3506-1:2009 ial 1.4529 or 1.4565, an Property class acc. to EN ISO 3506-1:2009 Property class		38-1:2014 8% fracture elongation 8% fracture elongation 2% fracture elongation 2% fracture elongation	
4 High 1 2	Filling washer ⁵⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mater Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Property class acc. to EN ISO 3506-1:2009 ial 1.4529 or 1.4565, ac Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009		38-1:2014 8% fracture elongatio 8% fracture elongation 2% fracture elongation 2% fracture elongation	
High 1	Filling washer ⁵⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mater Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000,	Property class acc. to EN ISO 3506-1:2009 ial 1.4529 or 1.4565, ac Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	38-1:2014 8% fracture elongation 8% fracture elongation 2% fracture elongation 2% fracture elongation	
4 High 1 2 3a	Filling washer ⁵⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mater Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer	Property class acc. to EN ISO 3506-1:2009 ial 1.4529 or 1.4565, ac Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009		38-1:2014 8% fracture elongatio 8% fracture elongation 9% fracture elongation 9% fracture elongation 9% fracture elongation	
4 1 2 3a	Filling washer ⁵⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mater Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Property class acc. to EN ISO 3506-1:2009 ial 1.4529 or 1.4565, au Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 Material 1.4529 or 1.44 Property class acc. to	$\begin{array}{ c c c c c c c }\hline 50 & f_{uk} = 500 \ N/mm^2; \ f_{yk} = 210 \ N/mm^2; \ A_5 > 10 \ f_{uk} = 700 \ N/mm^2; \ f_{yk} = 450 \ N/mm^2; \ A_5 > 12 \ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	 38-1:2014 8% fracture elongatic 8% fracture elongation 9% fracture elongation 	
4 High 1 2 3a 3b 4 (1) (2) (3) (4)	Filling washer ⁵⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mater Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer	Property class acc. to EN ISO 3506-1:2009 ial 1.4529 or 1.4565, ac Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 Material 1.4529 or 1.44 Property class acc. to EN ISO 3506-1:2009 24 and Internal threaded ac pent for performance categ	$\begin{array}{ c c c c c c }\hline 50 & f_{uk} = 500 \ \text{N/mm}^2; \ f_{yk} = 210 \ \text{N/mm}^2; \ A_5 > 12\\\hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 50 & f_{uk} = 500 \ \text{N/mm}^2; \ f_{yk} = 210 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 80 & f_{uk} = 800 \ \text{N/mm}^2; \ f_{yk} = 600 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 50 & \text{for anchor rod class } 50\\\hline \hline 70 & \text{for anchor rod class } 50\\\hline \hline 70 & \text{for anchor rod class } 70\\\hline 80 & \text{for anchor rod class } 80\\\hline \hline 565, \ \text{acc. to EN 10088-1: 2014}\\\hline \hline 50 & f_{uk} = 500 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ A_5 = 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ A_5 = 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ A_5 = 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ A_5 = 120 \ \text{N/mm}^2;$	 38-1:2014 8% fracture elongation 8% fracture elongation 9% fracture elongation 	
4 High 1 2 3a 3b 4 (1) (2) (3) (4) (5)	Filling washer ⁵⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mater Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000) Filling washer Internal threaded anchor rod ^{1) 2)} Property class 70 for anchor rods up to M or IG-M20 only property class 50 As > 8% fracture elongation if no requirem Property class 80 only for stainless steel	Property class acc. to EN ISO 3506-1:2009 ial 1.4529 or 1.4565, ac Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 Material 1.4529 or 1.44 Property class acc. to EN ISO 3506-1:2009 24 and Internal threaded a pent for performance categ A4	$\begin{array}{ c c c c c c }\hline 50 & f_{uk} = 500 \ \text{N/mm}^2; \ f_{yk} = 210 \ \text{N/mm}^2; \ A_5 > 12\\\hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 50 & f_{uk} = 500 \ \text{N/mm}^2; \ f_{yk} = 210 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 80 & f_{uk} = 800 \ \text{N/mm}^2; \ f_{yk} = 600 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 50 & \text{for anchor rod class } 50\\\hline \hline 70 & \text{for anchor rod class } 50\\\hline \hline 70 & \text{for anchor rod class } 70\\\hline 80 & \text{for anchor rod class } 80\\\hline \hline 565, \ \text{acc. to EN 10088-1: 2014}\\\hline \hline 50 & f_{uk} = 500 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ f_{yk} = 450 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ A_5 > 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ A_5 = 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ A_5 = 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ A_5 = 12\\\hline \hline 70 & f_{uk} = 700 \ \text{N/mm}^2; \ A_5 = 120 \ \text{N/mm}^2;$	 38-1:2014 8% fracture elongation 8% fracture elongation 9% fracture elongation 	

Reir	Reinforcing bar Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 24, Ø 25, Ø 28, Ø 32							
	h _{ef}							
	 Minimum value of related rip area f_{R,min} ac Rib height of the bar shall be in the range 							
	(d: Nominal diameter of the bar; h: Rip hei							
Tab	le A2: Materials							
Part	Designation	Material						
Reinf	orcing bars							
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	1992-1-1/NA					
Essy	ve Injection system HY for concrete							
	luct description erials reinforcing bar		Annex A 5					

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 to M24 (except hot-dip galvanised rods).

Base materials:

- · Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- II: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)
- III: 40 °C to +160 °C (max long term temperature +100 °C and max short term temperature +160 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
- (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to:
 - EN 1992-4:2018 and Technical Report TR055

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water): M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Essve Injection system HY for concrete

Intended Use Specifications Annex B 1

Table B1: Installation parameters for threaded rod										
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30	
Diameter of element	$d = d_{nom} [mm] =$	8	10	12	16	20	24	27	30	
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	22	28	30	35	
Effective embedment denth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120	
Effective embedment depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600	
Diameter of clearance hole in the fixture ¹⁾	d _f [mm] =	9	12	14	18	22	26	30	33	
Maximum torque moment	T _{inst} [Nm] ≤	10	20	40 ²⁾	60	100	170	250	300	
Minimum thickness of member	h _{min} [mm]	-	_{∍f} + 30 m ≥ 100 mn		h _{ef} + 2d ₀					
Minimum spacing	s _{min} [mm]	40	50	60	75	95	115	125	140	
Minimum edge distance	c _{min} [mm]	35	40	45	50	60	65	75	80	

¹⁾ For application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and anchor rod shall be filled force-fit with mortar.

²⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Table B2: Installation parameters for rebar

	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
d = d _{nom} [mm] =	8	10	12	14	16	20	24	25	28	32
d ₀ [mm] =	12	14	16	18	20	25	32	32	35	40
h _{ef,min} [mm] =	60	60	70	75	80	90	96	100	112	128
h _{ef,max} [mm] =	160	200	240	280	320	400	480	500	560	640
h _{min} [mm]			h _{ef} + 2d ₀							
s _{min} [mm]	40	50	60	70	75	95	120	120	130	150
c _{min} [mm]	35	40	45	50	50	60	70	70	75	85
	= d ₀ [mm] = h _{ef,min} [mm] = h _{ef,max} [mm] = h _{min} [mm] s _{min} [mm]	$\begin{array}{c} d = d_{nom} \ [mm] \\ = \\ \\ d_0 \ [mm] = \\ \\ h_{ef,min} \ [mm] = \\ \\ h_{ef,max} \ [mm] = \\ \\ h_{min} \ [mm] \\ \\ \\ \end{array} \begin{array}{c} h_{ef} + 3 \\ \geq 100 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c c} d = d_{nom} \ [mm] \\ = \\ \end{array} \begin{array}{c} 10 \\ \hline \\ 0 \\ \hline \hline \\ 0 \\ \hline 0 \\ \hline \\ 0 \\ \hline \hline \\ 0 \\ \hline \hline \\ 0 \\ \hline 0 \\ \hline \hline \\ 0 \\ \hline \hline \hline \hline$	$ \begin{array}{c c} d = d_{nom} [mm] \\ = \\ d_0 [mm] = \\ 12 \\ \hline d_0 [mm] = \\ 12 \\ 14 \\ 16 \\ \hline h_{ef,min} [mm] = \\ 60 \\ 60 \\ 70 \\ \hline h_{ef,max} [mm] = \\ 160 \\ 200 \\ 240 \\ \hline h_{ef,max} [mm] \\ \hline h_{ef} + 30 \\ \hline mm \\ \ge 100 \\ mm \\ \hline s_{min} [mm] \\ 40 \\ 50 \\ 60 \\ \end{array} $	$\begin{array}{c cccc} d = d_{nom} [mm] \\ = \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Table B3: Installation parameters for Internal threaded rod

Anchor size		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Internal diameter of sleeve	d ₂ [mm] =	6	8	10	12	16	20
Outer diameter of sleeve ¹⁾	$d = d_{nom} [mm] =$	10	12	16	20	24	30
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	22	28	35
Effective embedment depth	h _{ef,min} [mm] =	60	70	80	90	96	120
Effective embedment depth	h _{ef,max} [mm] =	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22
Maximum torque moment	T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length min/max	l _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min} [mm]]					
Minimum spacing	s _{min} [mm]	50	60	75	95	115	140
Minimum edge distance	c _{min} [mm]	40	45	50	60	65	80

With metric threads according to EN 1993-1-8:2005+AC:2009

Essve Injection system HY for concrete

Intended Use Installation parameters Annex B 2

	177666666666666666		2		1999999999999						
Threaded Rod	Rebar	Internal threaded rod	d ₀ Drill bit - Ø HD, HDB, CA	d Brus	h - Ø	d _{b,min} min. Brush - Ø	Piston plug		on direction f piston plu		
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]					
M8			10	RB10	11,5	10,5			1	0000000000	
M10	8	IG-M6	12	RB12	13,5	12,5	1	NI. 1			
M12	10	IG-M8	14	RB14	15,5	14,5	1	ino binč	required		
	12		16	RB16	17,5	16,5	1				
M16	14	IG-M10	18	RB18	20,0	18,5	VS18				
	16		20	RB20	22,0	20,5	VS20				
M20		IG-M12	22	RB22	24,0	22,5	VS22		h _{ef} >		
	20		25	RB25	27,0	25,5	VS25	h _{ef} > 250 mm			
M24		IG-M16	28	RB28	30,0	28,5	VS28			all	
M27			30	RB30	31,8	30,5	VS30		250 mm		
	24 / 25		32	RB32	34,0	32,5	VS32				
M30	28	IG-M20	35	RB35	37,0	35,5	VS35				
Drill bit dia Drill hole o						: - Rec. con bit diameter () 🛛	·)	
Piston p		erhead or h	norizontal			eel brush F		diameters		∃	
mətanat		18 mm to 40	mm		Di		n (00). an	diameters			

Drilling of the bore	hole	
	Drill with hammer drill a hole into the base material to the size and required by the selected anchor (Table B1, B2, or B3), with hammer or compressed air drilling. The use of a hollow drill bit is only in consufficient vacuum permitted. In case of aborted drill hole: The drill hole shall be filled with mortage.	ner (HD), hollow (HDB) ombination with a
	Attention! Standing water in the bore hole must be removed before	ore cleaning.
AC: Cleaning for I	bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (und	cracked concrete only!
4x	 2a. Starting from the bottom or back of the bore hole, blow the hole cl (Annex B 3) a minimum of four times. 	lean by a hand pump
	 2b. Check brush diameter (Table B4). Brush the hole with an appropr > d_{b,min} (Table B4) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush ext 	
4x	2c. Finally blow the hole clean again with a hand pump (Annex B 3) a	a minimum of four times
CAC: Cleaning for a	all bore hole diameter in uncracked and cracked concrete	
2x	2a. Starting from the bottom or back of the bore hole, blow the hole c compressed air (min. 6 bar) (Annex B 3) a minimum of two times stream is free of noticeable dust. If the bore hole ground is not rea extension must be used.	until return air
	2b. Check brush diameter (Table B4). Brush the hole with an appropr $> d_{b,min}$ (Table B4) a minimum of two times in a twisting motion. If the bore hole ground is not reached with the brush, a brush external	
2x	2c. Finally blow the hole clean again with compressed air (min. 6 bar) minimum of two times until return air stream is free of noticeable or ground is not reached an extension must be used.	
	After cleaning, the bore hole has to be protected against re-co an appropriate way, until dispensing the mortar in the bore ho the cleaning has to be repeated directly before dispensing the In-flowing water must not contaminate the bore hole again.	ole. If necessary,
Essve Injection sys	stem HY for concrete	
ntended Use		Annex B 4

Installation inst	ructions (continuation)	
	3. Attach the supplied static-mixing nozzle to the cartridge and load th correct dispensing tool. For every working interruption longer than the recommended work well as for new cartridges, a new static-mixer shall be used.	
ter en	Prior to inserting the anchor rod into the filled bore hole, the position depth shall be marked on the anchor rods.	on of the embedment
min. 3 full stroke	5 Prior to dispensing into the anchor hole, squeeze out separately a r strokes and discard non-uniformly mixed adhesive components unt consistent grey colour.	
	6 Starting from the bottom or back of the cleaned anchor hole, fill the approximately two-thirds with adhesive. Slowly withdraw the static mole fills to avoid creating air pockets. If the bottom or back of the areached, an appropriate extension nozzle must be used. Observe t given in Table B5.	mixing nozzle as the nchor hole is not
	 7. Piston plugs and mixer nozzle extensions shall be used according to following applications: Horizontal assembly (horizontal direction) and ground erection direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 2 Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 	(vertical downwards 250mm
	Push the threaded rod or reinforcing bar into the anchor hole while ensure positive distribution of the adhesive until the embedment de The anchor shall be free of dirt, grease, oil or other foreign material	pth is reached.
	9. Be sure that the anchor is fully seated at the bottom of the hole and visible at the top of the hole. If these requirements are not maintain to be renewed. For overhead application the anchor rod shall be fix	ned, the application has
+20°C	10. Allow the adhesive to cure to the specified time prior to applying an not move or load the anchor until it is fully cured (attend Table B5)	
Tinst.	11. After full curing, the add-on part can be installed with up to the mate (Table B1 or B3) by using a calibrated torque wrench. It can be op- gap between anchor and fixture with mortar. Therefor substitute the washer and connect the mixer reduction nozzle to the tip of the mixer filled with mortar, when mortar oozes out of the washer.	tional filled the annular e washer by the filling
Essve Injection sy	stem HY for concrete	
Intended Use	ons (continuation)	Annex B 5

Concrete			rking time and mini Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
0 °C	to	+ 4 °C	25 min	3,5 h	7 h
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min
Cartridge	temp	erature		+5°C to +40°C	
Ξssve Injecti	on sy	rstem HY for c	concrete		

Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods Size M 8 M 10 M 12 M 16 M 20 M24 M 27 M 30 Cross section area As [mm²] 36,6 58 84,3 157 245 353 459 561 Characteristic tension resistance, Steel failure 1) Steel, Property class 4.6 and 4.8 $N_{\mathsf{Rk},\mathsf{s}}$ [kN] 15 (13) 23 (21) 34 63 98 141 184 224 $N_{Rk,s}$ Steel, Property class 5.6 and 5.8 [kN] 18 (17) 29 (27) 42 78 122 176 230 280 Steel, Property class 8.8 29 (27) 46 (43) 125 $N_{\mathsf{Rk},\mathsf{s}}$ [kN] 67 196 282 368 449 Stainless steel A2, A4 and HCR, Property class 50 N_{Rk,s} 42 79 123 177 230 281 [kN] 18 29 N_{Rk,s} Stainless steel A2, A4 and HCR, Property class 70 [kN] 26 41 59 110 171 247 $N_{\mathsf{Rk},\mathsf{s}}$ Stainless steel A4 and HCR, Property class 80 [kN] 29 46 67 126 196 282 --Characteristic tension resistance, Partial factor²⁾ Steel, Property class 4.6 2,0 [-] YMs.N Steel, Property class 4.8 1.5 [-] γMs.N Steel, Property class 5.6 [-] 2.0 γMs,N Steel, Property class 5.8 [-] 1,5 γMs.N Steel, Property class 8.8 γMs,N [-] 1,5 Stainless steel A2, A4 and HCR, Property class 50 [-] 2,86 γMs,N Stainless steel A2, A4 and HCR, Property class 70 [-] 1,87 γMs,N Stainless steel A4 and HCR, Property class 80 γMs.N [-] 1.6 Characteristic shear resistance, Steel failure 1) V⁰_{Rk,s} Steel, Property class 4.6 and 4.8 [kN] 9 (8) 14 (13) 20 38 59 85 110 135 arm Steel, Property class 5.6 and 5.8 V⁰_{Rk,s} 21 115 140 [kN] 9 (8) 15 (13) 39 61 88 lever Steel, Property class 8.8 V⁰_{Rk,s} [kN] 15 (13) 23 (21) 34 63 98 141 184 224 Stainless steel A2, A4 and HCR, Property class 50 $V^0_{Rk,s}$ [kN] 9 15 21 39 61 88 115 140 Without V⁰_{Rk,s} Stainless steel A2, A4 and HCR, Property class 70 [kN] 13 20 30 55 86 124 --V⁰_{Rk,s} Stainless steel A4 and HCR, Property class 80 [kN] 15 23 34 63 98 141 -Steel, Property class 4.6 and 4.8 M⁰_{Rk,s} 15 (13) 30 (27) 52 133 260 449 666 900 [Nm] Steel, Property class 5.6 and 5.8 M⁰_{Rk,s} 19 (16) 37 (33) 324 1123 [Nm] 65 166 560 833 arm M⁰Rk,s 30 (26) 266 519 896 1797 Steel, Property class 8.8 [Nm] 60 (53) 105 1333 lever Stainless steel A2, A4 and HCR, Property class 50 832 M⁰_{Bk.s} [Nm] 19 37 66 167 325 561 1125 With Stainless steel A2, A4 and HCR, Property class 70 M⁰_{Rk.s} [Nm] 26 52 92 232 454 784 _ -Stainless steel A4 and HCR, Property class 80 30 59 105 266 519 896 M⁰_{Rk,s} [Nm] --Characteristic shear resistance, Partial factor 2) Steel, Property class 4.6 1.67 γMs,V [-] Steel, Property class 4.8 [-] 1.25 γMs,V Steel, Property class 5.6 [-] 1,67 γMs.V Steel, Property class 5.8 [-] 1,25 γMs,V Steel, Property class 8.8 [-] 1.25 γMs,V Stainless steel A2, A4 and HCR, Property class 50 2,38 [-] γ_{Ms.V} Stainless steel A2, A4 and HCR, Property class 70 [-] 1,56 γMs,V Stainless steel A4 and HCR, Property class 80 [-] 1,33 γMs.V

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hotdip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

²⁾ in absence of national regulation

Essve Injection system HY for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

	aracteristic valu smic action (pe					atic, q	uasi-	static	actio	n and	l
Anchor size threaded	· · ·		J	M 8	M 10	M 12	M 16	M 20	M24	M27	M30
Steel failure											
Characteristic tension re	eistance	N _{Rk,s}	[kN]			A _s •	f _{uk} (or se	e Table	C1)		
		N _{Rk,eq,C1}	[kN]				1,0 •	$N_{Rk,s}$			
Characteristic tension re Steel, strength class 8.8 Stainless Steel A4 and I Strength class ≥70	<i>,</i>	N _{Rk,eq,C2}	[kN]	N	PA		1,0 •			NF	PA
Partial factor		γMs,N	[-]				see Ta	ble C1			
Combined pull-out and											
	stance in non-cracked co	oncrete C20/25	1		1						
Temperature range I: 80°C/50°C	- Dry, wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	17	17	16	15	14	13	13	13
Temperature range II: 120°C/72°C	and flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	15	14	14	13	12	12	11	11
Temperature range III: 160°C/100°C		$ au_{\text{Rk,ucr}}$	[N/mm ²]	12	11	11	10	9,5	9,0	9,0	9,0
Characteristic bond resi	stance in cracked concre	ete C20/25	1	_	_					_	
Temperature range I: 80°C/50°C		$\tau_{\text{Rk,cr}} = \tau_{\text{Rk, eq,C1}}$	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
	Dry, wet concrete	τ _{Rk, eq,C2}	[N/mm ²]	6,0	PA 6,5	3,6 7,0	3,5 7,5	3,3 7,0	2,3 6,0	NF 6,0	-A 6,0
Temperature range II: 120°C/72°C	and	$\tau_{\rm Rk,cr} = \tau_{\rm Rk, eq,C1}$ $\tau_{\rm Rk, eq,C2}$	[N/mm ²]		PA	3,1	3,0	2,8	2,0	0,0 NF	,
Temperature range III:	flooded bore hole	$\tau_{\text{Rk, eq,C2}}$ $\tau_{\text{Rk,cr}} = \tau_{\text{Rk, eq,C1}}$	[N/mm ²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
160°C/100°C		TRk, eq,C2	[N/mm ²]		PA	2,5	2,7	2,5	1,8	NF	
		C25/30)				1,0	02			
	novoto	C30/37					1,0				
Increasing factors for co (only static or quasi-stat		C35/45					1,0				
Ψο	,	C40/50					1,0				
		C45/55					1,0 1,1				
Concrete cone failure		0.50/60	J				١,	10			
Non-cracked concrete		k _{ucr,N}	[-]				11	,0			
Cracked concrete		k _{cr,N}	[-]				7,	,7			
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]				2 c	cr.N			
Splitting								.,			
	h/h _{ef} ≥ 2,0						1,0	h _{ef}			
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]			2	$2 \cdot h_{ef} \left(2 \right)$	$5 - \frac{h}{h_{ef}}$)		
	h/h _{ef} ≤ 1,3						2,4	h _{ef}			
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp			
Installation factor											
for dry and wet concrete	e (MAC)	γinst	[-]		1	,2		No Per	rformance	Assessed	(NPA)
for dry and wet concrete	e (CAC)	γinst	[-]				1,	,0			
for flooded bore hole (C	AC)	γinst	[-]				1,	,4			
Essve Injection s	ystem HY for conc	rete							_		
	s of tension loads und ormance category C1+		static actio	n and					Ann	ex C 2	2

Table C3: Characteristic va seismic action (p						c, qua	asi-sta	tic ac	tion and	ł
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm				1	_1		1	1		
Characteristic shear resistance Steel, strength class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]			0,6	• A _s • f _{uk}	(or see T	able C1)		
Characteristic shear resistance Steel, strength class 5.6, 5.8 and 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]			0,5	• A _s • f _{uk}	(or see T	able C1)		
Characteristic shear resistance (Seismic C1)	$V_{Rk,s,eq,C1}$	[kN]				0,7	70 • V ⁰ _{Rk,s}			
Characteristic shear resistance (Seismic C2), Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	V _{Rk,s,eq,C2}	[kN]	N	PA		0,70	• V ⁰ _{Rk,s}		N	PA
Partial factor	γMs,V	[-]				see	Table C1			
Ductility factor	k ₇	[-]					1,0			
Steel failure with lever arm	•									
	M ⁰ _{Rk,s}	[Nm]			1,2	$oldsymbol{\cdot} W_{el} oldsymbol{\cdot} f_{uk}$	(or see T	able C1)		
Characteristic bending moment	M ⁰ _{Rk,s,eq,C1}	[Nm]			No P	erformar	ice Asses	sed (NPA	.)	
	M ⁰ _{Rk,s,eq,C2}	[Nm]			No P	erformar	ice Asses	sed (NPA)	
Partial factor	γMs,V	[-]				see	Table C1			
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]					1,0			
Concrete edge failure										
Effective length of fastener	lf	[mm]			min(h _{ef} ; 1	l2•d _{nom})			min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			
Factor for annular gap	α_{gap}	[-]				0,	.5 (1,0) ¹⁾			
¹⁾ Value in brackets valid for filled annular gat required) between ar	nchor an	d clearan	ce hole i	n the fixtur	e. Use of	f special fi	lling wash	ner Annex A	3 is

Essve Injection system HY for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1+C2)

Anchor size internal t	hreaded anchor rods			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure ¹⁾									
Characteristic tension r Steel, strength class 5.8		N _{Rk,s}	[kN]	10	17	29	42	76	123
Partial factor	5	γ _{Ms,N}	[-]			1,	5		
Characteristic tension r		N _{Rk.s}	[kN]	16	27	46	67	121	196
Steel, strength class 8.8 Partial factor	3	γ _{Ms,N}	[-]			1.	5		
Characteristic tension r		N _{Rk,s}	[kN]	14	26	41	59	110	124
	HCR, Strength class 70 ²⁾			14	20		55	110	
Partial factor	d concrete cone failure	γMs,N	[-]			1,87			2,86
	istance in non-cracked concre	ete C20/25							
Temperature range I: 80°C/50°C		$\tau_{Rk,ucr}$	[N/mm²]	17	16	15	14	13	13
Temperature range II: 120°C/72°C	Dry, wet concrete and flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	14	14	13	12	12	11
Temperature range III: 160°C/100°C		$\tau_{Rk,ucr}$	[N/mm²]	11	11	10	9,5	9,0	9,0
Characteristic bond res Temperature range I:	istance in cracked concrete C	20/25							
80°C/50°C Temperature range II:	Dry, wet concrete and	$\tau_{Rk,cr}$	[N/mm²]	7,5	8,0	9,0	8,5	7,0	7,0
120°C/72°C Temperature range III:	flooded bore hole	$\tau_{\rm Rk,cr}$	[N/mm ²]	6,5	7,0	7,5	7,0	6,0	6,0
160°C/100°C		τ _{Rk,cr}	[N/mm ²]	5,5	6,0	6,5	6,0	5,5	5,5
			30/37			1,0			
Increasing factors for co	oncrete		35/45			1,0			
ψ_c			40/50			1,0			
		С	45/55			1,0	09		
<u> </u>		C	50/60			1,	10		
Concrete cone failure									
Non-cracked concrete		k _{ucr,N}	[-]			11 7.	,		
Edge distance		C _{cr,N}	[mm]			1,5			
Axial distance		S _{cr,N}	[mm]			2 c			
Splitting failure									
	h/h _{ef} ≥ 2,0					1,0	h _{ef}		
Edge distance	$2,0 > h/h_{of} > 1,3$	C _{cr,sp}	[mm]			$2 \cdot h_{ef} \bigg(2,$	$5-\frac{h}{h_{ef}}$		
	h/h _{ef} ≤ 1,3					2,4	h _{ef}		
Axial distance	·	S _{cr,sp}	[mm]			2 c	cr,sp		
Installation factor									
for dry and wet concret	e (MAC)	γinst	[-]		1,2		No Perfor	mance Asses	sed (NPA)
for dry and wet concret	e (CAC)	γinst	[-]			1,	0		
for flooded bore hole (C	() (AC)	Yinst	[-]			1.			
¹⁾ Fastening so threaded roo and the fasteners	crews or threaded rods (incl. r d. The characteristic tension re ening element. strength class 50 is valid	ut and wash	er) must con			e material a	nd property		
Feeve Injection (system HY for concret	<u>م</u>							

Anchor size for internal threaded a	nchor rods		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure without lever arm ¹⁾				•				
Characteristic shear resistance, Steel, strength class 5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61
Partial factor	γм₅,∨	[-]		1	1	1,25	1	
Characteristic shear resistance, Steel, strength class 8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor	γMs,V	[-]		1	I	1,25	1	
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor	γMs,V	[-]			1,56			2,38
Ductility factor	k ₇	[-]				1,0		
Steel failure with lever arm ¹⁾								
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Partial factor	γMs,V	[-]		1	1	1,25	1	
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor	ŶMs,V	[-]		1	1	1,25	1	
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor	γMs,V	[-]			1,56			2,38
Concrete pry-out failure								
actor	k ₈	[-]				2,0		
nstallation factor	γinst	[-]				1,0		
Concrete edge failure	I							
Effective length of fastener	_f	[mm]		mi	n(h _{ef} ; 12 • d _r	om)		min(h _{ef} ; 300mm)
Outside diameter of fastener	d _{nom}	[mm]	10	12	16	20	24	30
nstallation factor	γinst	[-]				1,0		
 Fastening screws or threa threaded rod. The charact and the fastening element For IG-M20 strength class 	eristic tension re	ut and wash esistance for	her) must co r steel failure	mply with the	e appropriate	e material an ass are valid	d property c for the inter	lass of the internal nal threaded rod
Essve Injection system HY	for concrete	9						

Table C6: Cha			ues of te erforman				er sta	atic,	quas	si-sta	tic ad	ction	and	
Anchor size reinforcing			Jiroman	<u></u>	Ø8. 9	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure	Jui				20	210	212	214	210	020	024	025	0 20	2 32
Characteristic tension res	istance		$N_{Rk,s}$	[kN]						• f _{uk} ¹⁾				
			N _{Rk,s, eq}	[kN]					1,0 • 4	$A_{s} \cdot f_{uk}^{(1)}$				
Cross section area			As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor			γMs,N	[-]					1,	,4 ²⁾				
Combined pull-out and														
Characteristic bond resist	tance in non-	cracked o	concrete C20/2	25			1		1					
Temperature range I: 80°C/50°C	Dry, wet co	ncrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	14	14	14	14	13	13	13	13	13	13
Temperature range II: 120°C/72°C	and flooded bore		$\tau_{\text{Rk,ucr}}$	[N/mm²]	13	12	12	12	12	11	11	11	11	11
Temperature range III: 160°C/100°C			τ _{Rk,ucr}	[N/mm²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
Characteristic bond resist	tance in cracl	ked conci	rete C20/25	1					1					
Temperature range I: 80°C/50°C	Dry, wet co	ncrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk, eq}}$	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperature range II: 120°C/72°C	and flooded bord		$\tau_{\text{Rk,cr}} = \tau_{\text{Rk, eq}}$	[N/mm ²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
Temperature range III: 160°C/100°C			$\tau_{\text{Rk,cr}} = \tau_{\text{Rk, eq}}$	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
				5/30						,02				
Increasing factors for con	crete			0/37						,04				
(only static or quasi-static				5/45						,07				
Ψc				0/50 5/55						,08				
				0/60						,09 ,10				
Concrete cone failure			0.00	5/00					١,	,10				
Non-cracked concrete			k _{ucr.N}	[-]					1.	1,0				
Cracked concrete			k _{cr,N}	[-]						,,0 .7				
Edge distance										,, 5 h _{ef}				
			C _{cr,N}	[mm]										
Axial distance			S _{cr,N}	[mm]					20	C _{cr,N}				
Splitting				1	1									
	h/h _{ef} ≥ 2,0								1,0) h _{ef}				
Edge distance	2,0 > h/h _{ef} >	• 1,3	C _{cr,sp}	[mm]				2	$\cdot h_{ef} \left(2 \right)$	$4,5 - \frac{h}{h_{ef}}$	-)			
	h/h _{ef} ≤ 1,3								2.4	1 h _{ef}	,			
Axial distance	., ,		S _{cr,sp}	[mm]					20	Ccr.sp				
Installation factor			Bcr,sp	[[]					2.	-cr,sp				
for dry and wet concrete			γinst	[-]			1,2			No	Performa	ance Ass	essed (N	
for dry and wet concrete			Yinst	[-]			.,=		1	,0				
for flooded bore hole (CA	. ,		γinst	[-]						,4				
¹⁾ f _{uk} shall be taken ²⁾ in absence of nat	from the spe	cifications on		bars										
Essve Injection sy	vstem HY	for con	crete								•	nne	/ () e	
Performances Characteristic values seismic action (perfor				asi-static a	action a	and					д	(inte)		

Table C7: Characteristic value seismic action (per					stati	c, qu	asi-s	static	acti	on a	nd	
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm												
	V ⁰ _{Rk,s}	[kN]					0,50 · /	A _s ∙ f _{uk} ¹⁾				
Characteristic shear resistance	V _{Rk,s,eq}	[kN]					0,35 · /	$A_{s} \cdot f_{uk}^{(1)}$				
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γмѕ,∨	[-]					1,	5 ²⁾				
Ductility factor	k ₇	[-]					1	,0				
Steel failure with lever arm												
Obevectovictic bending memory	M ⁰ _{Rk,s}	[Nm]					1.2 • W	$I_{\rm el} \cdot f_{\rm uk}^{(1)}$				
Characteristic bending moment	M ⁰ _{Rk,s,eq}	[Nm]			N	o Perfoi	mance	Assess	ed (NP	A)		
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	896	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]					1,	5 ²⁾				
Concrete pry-out failure												
Factor	k ₈	[-]					2	,0				
Installation factor	γinst	[-]					1	,0				
Concrete edge failure												
Effective length of fastener	lf	[mm]			min(ł	n _{ef} ; 12 •	d _{nom})			min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γinst	[-]					1	,0				
Factor for annular gap	α_{gap}	[-]					0,5 (1,0) ³⁾				
 f_{uk} shall be taken from the specifications of reinford in absence of national regulation ³⁾ Value in brackets valid for filled annular gab betwee 	ing bars en anchor and d	clearance	hole in	the fixtu	re. Use	of speci	al filling	washer	Annex	A 3 is re	quired	

Essve Injection system HY for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

Anchor size thread	ded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25 unde	er static and qua	si-statio	action	1		I	I	1	1
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
່120°C/72°Cັ	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
160°C/100°Č	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete	C20/25 under sta	tic, quasi-static	and sei	ismic C	1 action	1				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,10
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
160°C/100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424
Cracked concrete	C20/25 under sei	ismic C2 action								
All temperature	$\delta_{N,eq(DLS)}$ -factor	[mm/(N/mm ²)]			0,120	0,100	0,100	0,120		
ranges	$\delta_{N,eq(ULS)}$ -factor	[mm/(N/mm ²)]	- N	PA	0,140	0,150	0,110	0,150		PA
¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor	$\begin{array}{c} \cdot \ \tau; & \delta_{N,eq(} \\ \cdot \ \tau; & \delta_{N,eq(} \end{array}$	$DLS) = \delta_{N,eq(DLS)}$ -facto $ULS) = \delta_{N,eq(ULS)}$ -facto	or · τ;			stress for	r tension			
$\begin{array}{l} \delta_{N0}=\delta_{N0}\text{-factor}\\ \delta_{N\infty}=\delta_{N\infty}\text{-factor} \end{array}$	$\cdot \tau; \qquad \delta_{N,eq}$	$(ULS) = \delta_{N,eq}(ULS)$ -fact	or · τ;				r tension			
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C9: Di	τ; δ _{N,eq(} τ; δ _{N,eq(}	$(ULS) = \delta_{N,eq}(ULS)$ -fact	or · τ;				r tension M 20	M24	M 27	М 30
$\begin{array}{l} \delta_{N0}=\delta_{N0}\text{-factor}\\ \delta_{N\infty}=\delta_{N\infty}\text{-factor} \end{array}$	 τ; δ_{N,eq}(τ; δ_{N,eq}(uls) = δ _{N,eq(ULS)} -facto under shear le	or · τ; Dad ¹⁾ (1 	thread M 10	ed rod M 12) M 16	M 20		M 27	M 30
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C9: Di Anchor size thread	 τ; δ_{N,eq}(τ; δ_{N,eq}(uls) = δ _{N,eq(ULS)} -facto under shear le	or · τ; Dad ¹⁾ (1 	thread M 10	ed rod M 12) M 16	M 20		M 27	M 30 0,03
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C9: Di Anchor size thread Non-cracked and d	 τ; δ_{N,eq}(τ; δ_{N,eq}(splacements i ded rod cracked concrete 	$u_{LS} = \delta_{N,eq}(u_{LS})$ -facto under shear lo C20/25 under s	or · τ; Dad ¹⁾ (1 M 8 tatic, qu	thread M 10 Jasi-sta	ed rod M 12 tic and) M 16 seismic	M 20 C1 act	ion		0,03
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$	τ; $\delta_{N,eq}$ τ; $\delta_{N,eq}$ splacements i ded rod cracked concrete δ_{Vo} -factor δ_{Vo} -factor	under shear let be consistent of the stress of the stres	or · τ; Dad ¹⁾ (1 <u>M 8</u> tatic, qu	thread M 10 Jasi-stat	ed rod M 12 tic and 0,05) M 16 seismic 0,04	M 20 C1 act 0,04	i on 0,03	0,03	0,03
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$	τ; $\delta_{N,eq}$ τ; $\delta_{N,eq}$ splacements i ded rod cracked concrete δ_{Vo} -factor δ_{Vo} -factor	under shear let be consistent of the stress of the stres	or · τ; Dad ¹⁾ (1 M 8 tatic, qu 0,06 0,09	thread M 10 Jasi-sta 0,06 0,08	ed rod M 12 tic and 0,05) M 16 seismic 0,04	M 20 C1 act 0,04	i on 0,03	0,03 0,05	0,03 0,05
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-}factor \\ \delta_{N\infty} &= \delta_{N\infty} \text{-}factor \end{split}$	τ; $\delta_{N,eq}$ τ; $\delta_{N,eq}$ splacements i ded rod cracked concrete δ_{Vo} -factor δ_{Vo} -factor C20/25 under sei	$uls) = \delta_{N,eq(ULS)} - factors defined a state of the second sta$	or · τ; Dad ¹⁾ (1 M 8 tatic, qu 0,06 0,09	thread M 10 Jasi-stat	ed rod M 12 tic and 0,05 0,08) M 16 seismic 0,04 0,06	M 20 C1 act 0,04 0,06	i on 0,03 0,05	0,03 0,05	0,03
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$	τ; $\delta_{N,eq}$ τ; $\delta_{N,eq}$ splacements i ded rod cracked concrete δ_{Vo} -factor $\delta_{V.eq}(DLS)$ -factor $\delta_{V,eq}(DLS)$ -factor $\delta_{V,eq}(DLS)$ -factor v; v; v; v; pLS)-factor	under shear le control control contr	or · τ; Dad ¹⁾ (1 M 8 tatic, qu 0,06 0,09	thread M 10 Jasi-sta 0,06 0,08	ed rod M 12 tic and 0,05 0,08) M 16 seismic 0,04 0,06 0,13	M 20 C1 act 0,04 0,06	i on 0,03 0,05 0,06	0,03 0,05	0,03

Anchor size reinfo	rcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked conc	rete C20/2	25 under static	and qu	asi-sta	tic acti	on	1	I	1	1	1	
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,04
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,06
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,05
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,06
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,18
160°C/100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,19
Cracked concrete	C20/25 ur	nder static, qua	si-stati	c and s	eismic	C1 act	tion					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,10
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,14
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,11
120°C/72°Cັ	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,14
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,42
160°C/100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,44
¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C11: Di	τ; τ; splacem	τ: action bonc	hear lo	bad ¹⁾ (rebar							
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C11: Di Anchor size reinfo	τ; τ; splacem rcing bar	τ: action bonc	hear lo	oad ¹⁾ (Ø 10	rebar	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø3
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C11: Di Anchor size reinfo	τ; τ; splacem rcing bar	τ: action bonc	hear lo	oad ¹⁾ (Ø 10	rebar	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø3
$\delta_{N0} = \delta_{N0} \text{-factor}$ $\delta_{N\infty} = \delta_{N\infty} \text{-factor}$ Table C11: Di Anchor size reinfo For concrete C20/2 All temperature	τ; τ; splacem rcing bar	τ: action bonc	hear lo	oad ¹⁾ (Ø 10	rebar	Ø 14	Ø 16	Ø 20 0,04	Ø 24 0,03	Ø 25 0,03	Ø 28 0,03	Ø 3: 0,03
$\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C11: Di Anchor size reinfo For concrete C20/2 All temperature ranges ¹⁾ Calculation of the	τ; τ; splacem rcing bar 25 under s $δ_{V0}$ -factor $δ_{V\infty}$ -factor e displacem	t: action bond	Ø 8 9 atic and 0,06 0,09 0	Dad ¹⁾ (Ø 10 9 I seism 0,05	rebar) Ø 12 ic C1 a	Ø 14 Iction	I			I		
$\delta_{N0} = \delta_{N0}\text{-factor}$ $\delta_{N\infty} = \delta_{N\infty}\text{-factor}$ Table C11: Di Anchor size reinfo For concrete C20/2 All temperature ranges	τ; τ; splacem rcing bar 25 under s $δ_{V0}$ -factor $\delta_{V\infty}$ -factor e displacem V;	t: action bond nent under s static, quasi-st [mm/kN] [mm/kN]	Ø 8 9 atic and 0,06 0,09 0	Dad ¹⁾ (Ø 10 9 I seism 0,05	rebar) Ø 12 ic C1 a 0,05	Ø 14 action 0,04	0,04	0,04	0,03	0,03	0,03	0,0

Anchor size Inte	rnal threaded	rod	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked cor	ncrete C20/25	under static and qua	asi-static a	ction	1	•	1	
Temperature range	: δ _{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,037	0,039	0,042	0,046
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperature range I	I: δ _{N0} -factor	[mm/(N/mm ²)]	0,034	0,035	0,038	0,041	0,044	0,048
120°C/72°Cັ	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperature range II	II: δ _{N0} -factor	[mm/(N/mm ²)]	0,126	0,131	0,142	0,153	0,163	0,179
160°C/100°Č	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,129	0,135	0,146	0,157	0,168	0,184
Cracked concret	e C20/25 unde	er static and quasi-s	tatic action					
Temperature range	: δ _{N0} -factor	[mm/(N/mm ²)]	0,083	0,085	0,090	0,095	0,099	0,106
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,170	0,110	0,116	0,122	0,128	0,137
Temperature range I	I: δ _{N0} -factor	[mm/(N/mm ²)]	0,086	0,088	0,093	0,098	0,103	0,110
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,111	0,114	0,121	0,127	0,133	0,143
Temperature range II	II: δ _{N0} -factor	[mm/(N/mm ²)]	0,321	0,330	0,349	0,367	0,385	0,412
160°C/100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,330	0,340	0,358	0,377	0,396	0,424
	pr · τ;							
Table C13: [nts under shear l	oad ¹⁾ (Int	ernal thi	readed ro	od)		
	Displaceme	nts under shear l				od) G-M 12	IG-M 16	IG-M 20
Anchor size Inte	Displaceme	1	i-M 6 IC	i-M 8 IC	à-M 10 I		IG-M 16	IG-M 20
Anchor size Inte Non-cracked and	Displaceme	rod IG crete C20/25 under s	i-M 6 IG	-M 8 IC Juasi-stati	à-M 10 I		IG-M 16 0,04	IG-M 20 0,04
Anchor size Inte	Displaceme rnal threaded d cracked con	rod IG crete C20/25 under s	i-M 6 IG static and c	i -M 8 IC iuasi-stati	G-M 10	G-M 12		IG-M 20 0,04 0,06

Essve Injection system HY for concrete

Performances

Displacements (Internal threaded anchor rod)